FISEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

KF-alumina-mediated Bargellini reaction

Md. Rumum Rohman, Bekington Myrboh *

Department of Chemistry, North-Eastern Hill University, Mawlai-Mawkynroh, Shillong 793 022, India

ARTICLE INFO

Article history: Received 13 April 2010 Revised 2 July 2010 Accepted 6 July 2010 Available online 8 July 2010

Keywords: Bargellini reaction KF-alumina Nucleophile

ABSTRACT

KF-alumina was found to be an efficient base for the synthesis of sterically hindered α -substituted carboxylic acids. A series of Bargellini reactions were performed by using various substituted anilines, phenols, and thiophenols as nucleophiles with ketones in the presence of chloroform and KF-alumina as a base. All the compounds were fully characterized.

© 2010 Elsevier Ltd. All rights reserved.

Bargellini reaction provides a multi component, atom efficient synthesis of molecules with significantly increased complexity, diversity, and functionality. The condensation of phenols with chloroform and acetone in the presence of sodium hydroxide to give α -phenoxyisobutyric acids was first reported by Bargellini. 1 The application of Bargellini reaction includes the preparation of griseofulvin analogs by Korger. 2a Recently, Butcher and Hurst reported an important extension of the Bargellini reaction for the synthesis of drugs in the pharmaceutical industry. 2b

Although, there are number of methods reported for the Bargellini reaction using different nucleophiles other than phenols, for example, (i) potassium amide and sodium azide,³ (ii) aromatic amines as nucleophile,^{2b} however, in all these reported methods either sodium or potassium hydroxide was used as a base. To our knowledge there is no method reported with an alternative base. Therefore, there is still scope for the development of a better alternative method which might proceed under mild, environmentally benign, and clean reaction condition.

In recent years, the use of inorganic solid-supported regents has become popular due to their characteristic properties such as enhanced reactivity and selectivity, a straight forward work-up procedure and milder reaction conditions. Among these inorganic solid supports, potassium fluoride coated with alumina (KF/Al₂O₃) has been used extensively because of its easy accessibility and strong basic nature. KF/Al₂O₃ derives its basicity from the formation of KOH in the initial preparation of the solid-supported material by the reaction of KF with alumina support. Some of the reported reactions which use the KF/Al₂O₃ combination include the Knoevenagel condensation, the Henry reaction, the Darzens

reaction, 6c the Wittig reaction, 6d the Biginelli reaction, 7 alkylation, 8 and elimination reaction. 9 Therefore, we decided to use KF/Al $_2$ O $_3$ as a base and/or a source for the $^{-}$ OH ion in the Bargellini reaction in combination with chloroform as a source of carbon for the incorporation of the carboxylic group.

Herein, we report on a convenient KF/Al_2O_3 -promoted Bargellini reaction from cyclic ketones and various nucleophiles such as substituted aniline, phenols, and thiophenols under mild reaction conditions (Scheme 1).

In the preliminary experiment, the reaction of **1a** with chloroform in the presence of KF/Al₂O₃ in ethanol proceeded slow and afforded the product in a very low yield, while the reaction in toluene led to the formation of the desired compound **3a** in high yield. For example, when 3-chloroaniline (**1a**) (2 mmol) was treated with cyclohexanone (**2a**) (6 mmol) in the presence of chloroform (8 mmol) and KF/Al₂O₃ (6 g, 40% KF in Al₂O₃) as a base in dry toluene, **3a** was obtained in 91% yield. A number of substituted aromatic anilines (**1b**–**f**) were reacted with cyclohexanone to demonstrate the generality of the reaction in presence of KF/Al₂O₃. Similarly, the reaction of nucleophile **1a** with the *N*-^tbutyloxycarbonyl-protected piperidone (**2g**) in the presence of KF/Al₂O₃ underwent smoothly in 12 h giving product **3g** with a very high purity. The

$$R \stackrel{X}{\Vdash} + \stackrel{O}{\longleftarrow} \frac{\mathsf{KF}/\mathsf{Al}_2\mathsf{O}_3, \mathsf{CHCl}_3}{\mathsf{Toluene, rt.}} R \stackrel{O}{\Vdash} \mathsf{OH}$$

$$X = \mathsf{NH}_2, \mathsf{OH}, \mathsf{SH}$$

$$Y = \mathsf{CH}_2, \mathsf{NBoc}$$

Scheme 1.

^{*} Corresponding author. Tel.: +91 364 2722612; fax: +91 364 2228213. E-mail address: bmyrboh@nehu.ac.in (B. Myrboh).

 $\begin{tabular}{ll} \textbf{Table 1} \\ KF/Al_2O_3 \ assisted \ Bargellini \ reaction \ of \ anilines, \ phenols, \ thiophenols \ via \ Scheme \ 1 \\ \end{tabular}$

Entry	Substrate 1	Substrate 2	Product 3 ^b	Yield ^a (%)
a	CINH ₂	<u></u> =0	CI H O OH	91
b	Br——NH ₂	2a	Br OH	65
c		2a	O H O OH	56
d	NO ₂	2a	NO ₂ H O OH	58
e	−√NH ₂	2a	H O OH	90
f	CI NH ₂	2a	CI H O	78
g	1a	Boc-N = O	CI H O OH Boc	72
h	1b	2 g	Br N OH	58
i	1c	2g	O H O OH N OH Boc	60
j	1e	2g	H O N N Boc	73
k	NH ₂	2a	H O OH	68
1	1k	2g	H O OH N Boc O OH CI OH CI OH	75
m	⟨¯⟩-он	2a	ООН	67 ^c
n	CI OH CI SH	2a	CIOOH	75 ^c
0	√SH	2a	SOH	73

(continued on next page)

Table 1 (continued)

Entry	Substrate 1	Substrate 2	Product 3 ^b	Yield ^a (%)
p	CI——SH	2a	S OH	80
q	1p	2g	CI N OH Boc	65

- ^a Isolated yields.
- $^{\rm b}\,$ Products have been characterized by recording IR, $^{\rm 1}H$ NMR and $^{\rm 13}C$ NMR.
- ^c THF as a solvent.

present procedure was then employed for the condensation of various substituted anilines (entries 1h-j, Table 1) and N- t butyloxy-carbonyl-protected piperidone (2g) to give the corresponding Bargellini compounds (3h-j) in good to excellent yields.

In order to test the scope of KF/Al₂O₃ base, we treated heterocyclic nucleophile 2-aminopyridine (1k) with 2a and 2g, which successfully resulted in the formation of compound **3k** and **3l** in 68% and 75% yield, respectively. Furthermore, this method is extended to phenols and thiophenols (1m-q) to furnish the desired products (3m-q) and the results are summarized in Table 1.¹¹ It may be noted that the reactions of substrates 1m and 1n with compound 2a afforded the products 3m and 3n, respectively, in poor yields in dry toluene whereas the same reactions in tetrahydrofuran as solvent afforded 3m and 3n in good yields. This may be due to the insolubility of the starting phenols (1m-n). All the products were confirmed by IR, ¹H, and ¹³C NMR spectral studies (Table 1).¹² It is important to highlight that the compounds **3m-n** were obtained from 1m-n in 67% and 75% yield, respectively, while the substituted phenols were reported to give low yields with 2a and 2g by using NaOH base thus indicating that the present protocol is much more effective.2b

It is noteworthy to mention that there is no side reaction observed for the nucleophile having the keto group (entries c and i); also the use of KF/Al_2O_3 as a base is tolerated in the presence of other functional groups while the protecting group N^{-t} butyloxy-carbonyl is not affected under the experimental conditions.

Although the mechanistic details remain ambiguous, the KF/ ${\rm Al_2O_3}$ -promoted reaction might proceed through deprotonation of chloroform followed by nucleophilic attack on the ketone yielding dichloro epoxide. The N–C bond is formed via the opening of dichloro epoxide by the nucleophile to give an acid chloride. Subsequently, the hydrolysis of the acid chloride would lead to the formation of the desired compound.

In summary, KF/Al_2O_3 was found to be a useful solid support base for the Bargellini reaction which is an important alternative to the Strecker reaction. The present KF/Al_2O_3 -promoted Bargellini reaction introduces the use of an alternative base and provides a simple procedure and good yields under mild reaction conditions.

Acknowledgments

M.R.R. thanks the UGC for support under the Special Assistance Program and SAIF, NEHU for providing analytical supports.

References and notes

- 1. Bargellini, G. Gazz. Chim. Ital. 1906, 36, 329.
- (a) Korger, G. Chem. Ber. 1963, 96, 10; (b) Butcher, K. J.; Hurst, J. Tetrahedron Lett. 2009, 50, 2497.

- (a) Reeve, W. Synthesis 1971, 131; (b) Corey, E. J.; Link, J. O. J. Am. Chem. Soc. 1992, 114, 1906.
- (a) Bunin, B. A. The Combinatorial Index; Academic: New York, 1998; (b) Czarnik, A. W.; DeWitt, S. H. A Practical Guide to Combinatorial Chemistry; American Chemical Society: Washington, DC, 1997; (c) Nicolaou, K. C.; Hanko, R.; Hartwig, W. Handbook of Combinatorial Chemistry; Wiley-VCH: Weinheim, 2002
- 5. Blass, B. E. Tetrahedron 2002, 58, 9301. and the references cited therein.
- (a) Thompson, A. M.; Bridges, A. J.; Fry, D. W.; Kraker, A. J.; Denny, W. A. J. Med. Chem. 1995, 38, 3780; (b) Bredereck, H.; Gompper, R.; Schuh, H. G.; Theilig, G. Angew. Chem. 1959, 71, 753; (c) Monge, A.; Martinez-Merino, V.; Sanmartin, C.; Fernandez, F. J.; Ochoa, M. C.; Bellver, C.; Artigas, P.; Fernandez-Alvarez, E. Eur. J. Med. Chem. 1989, 24, 209; (d) Matsunaga, T.; Tohda, Y.; Ariga, M. J. Chem. Soc., Perkin Trans. 1 2000, 27.
- (a) Svetlık, J.; Veizerova, L.; Kettmann, V. Tetrahedron Lett. 2008, 49, 3520; (b) Suzuki, I.; Iwata, Y.; Takeda, K. Tetrahedron Lett. 2008, 49, 3238.
- 8. (a) Trapini, G.; Franco, M.; Latrofa, A.; Ricciardi, L.; Carotti, A.; Serra, M.; Sanna, E.; Biggio, G.; Liso, G. J. Med. Chem. 1999, 42, 3934; (b) Lober, S.; Hubner, H.; Gmeneir, P. Bioorg. Med. Chem. Lett. 1999, 42, 3934; (c) Rival, Y.; Grassy, G.; Michel, G. Chem. Pharm. Bull. 1992, 40, 1170; (d) Lyon, M.; Kercker, T. Org. Lett. 2004, 26, 4989; (e) Jaramillo, C.; Carretero, C.; de Diego, E.; Hamoduchi, C.; del Prado, M.; Roldan, J. L.; Sanchez-Martinez, C. Tetrahedron Lett. 2002, 43, 9051; (f) Kaminski, J. J.; Wallmark, B.; Briving, C.; Andersson, B. M. J. Med. Chem. 1991, 34, 533; (g) Georges, G.; Vercauteren, D. P.; Vanderveken, D. J.; Horion, R.; Evrard, G. H.; Durant, F. V.; George, P.; Wick, A. Eur. J. Med. Chem. 1993, 28, 323.
- (a) Bristow, N. W.; Charlton, P. T.; Peak, D. A.; Short, W. F. J. Chem. Soc. 1954, 616; (b) Tadeka, K.; Shudo, K.; Okamoto, T.; Kousuge, T. Chem. Pharm. Bull. 1978, 26, 2924; (c) Knott, E. B. J. Chem. Soc. 1956, 1360; (d) Sugiura, S.; Akoi, H. K.; Inouf, S.; Goto, T. Yakukagaku Zasshi 1970, 90, 436; (e) Saint-Ruf, G.; Loukakou, B.; Zousi, C. J. Heterocycl. Chem. 1981, 18, 1565; (f) Ohta, M.; Masaki, M. Bull. Chem. Soc. Jpn. 1960, 37, 1392.
- Henriksen, G.; Platzer, S.; Marton, J.; Hauser, A.; Berthele, A.; Schwaiger, M.; Marinelli, L.; Lavecchia, A.; Novellino, E.; Wester, H.-J. J. Med. Chem. 2005, 48, 7720
- 11. General experimental procedure: To a solution of nucleophiles (2 mmol) in dry toluene, KF/Al₂O₃ (4.5–6 g, 40% by weight) N-'butyloxycarbonyl-4-piperidone or cyclohexanone (6 mmol) was added. Then, chloroform (8 mmol) was added drop wise over a period of 45 min at room temperature. The resulting reaction mixture was stirred at the same temperature under nitrogen atmosphere for 10–16 h. The reaction mixture was diluted with water (5 mL) and filtered through a celite bed. The residue was washed thoroughly with water (3 × 5 mL). The combined filtrate was separated and the aqueous layer was washed with diethyl ether (2 × 10 mL). The aqueous layer was acidified to \sim pH 3 with aqueous HCl (3 N) and extracted with ethyl acetate (3 × 10 mL). The combined ethyl acetate extract was washed with brine (15 mL) and dried over anhydrous Na₂SO₄. The organic layer was filtered and evaporated in vacuo to obtain a solid compound. In some cases the solid compound obtained was further purified by crystallization or by silica gel (60–120 mesh) column chromatography using ethyl acetate and hexane eluents.
- 12. Spectroscopic data for compound (**3a**): Off white solid; mp 100–103 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.43-2.05$ (m, 10H), 5.59 (br, s, 1H), 6.73 (d, 1H, J = 7.6 Hz), 6.86 (s, 1H), 6.91 (d, 1H, J = 7.6 Hz), 7.13 (t, 1H, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 20.95, 24.96, 32.22, 58.55, 112.07, 112.55, 115.08, 130.05, 133.13, 148.01, 176.90; IR (KBr): 3402, 3269, 3069, 2956, 2936, 2920, 2878, 2855, 1706, 1595, 1521, 1479, 1466, 1453, 1418, 1366, 1314, 1301, 1270, 1227 cm⁻¹. MS (AP+) calcd for $C_{13}H_{16}CINO_2$ 253.09, found m/z 253.9 [M+H]⁺; CHN analysis for C₁₃H₁₆ClNO₂; Theoretical calcd: C, 61.54; H, 6.36; Cl, 13.97; N, 5.52; O, 12.61; Found: C, 61.73; H, 6.27; N, 5.40. Compound (3b): Light yellow solid; mp 120–122 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.30–1.90 (m, 10H), 6.52 (d, 2H, J = 8.4 Hz), 6.75 (br, s, 1H), 7.20 (d, 2H, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 21.20, 24.97, 32.07, 61.24, 112.56, 118.50, 132.03, 142.11, 178.96; IR (KBr): 3434, 2942, 2927, 2857, 1697, 1593, 1499, 1460, 1444, 1321, 1288, 1254, 1167 cm⁻¹; CHN analysis for C₁₃H₁₆BrNO₂; Theoretical calcd: C, 52.36; H, 5.41; Br, 26.80; N, 4.70; O, 10.73; Found: C, 52.66; H, 5.30; N, 4.55. Compound (3c): Light yellowish white solid; mp 120-123 °C (uncorrected); ¹H NMR

(400 MHz, CDC₁₃): δ = 1.14–1.82 (m, 10H), 2.30 (s, 3H), 6.66 (d, 1H, J = 6.8 Hz), 7.02 (t, 1H, J = 7.6 Hz), 7.10 (s, 1H) 7.16 (d, 1H, J = 7.6 Hz); ¹³C NMR (100 MHz, CDC₁₃): δ = 22.10, 25.91, 27.53, 33.08, 61.91, 116.99, 121.06, 121.77, 130.29, 138.84, 144.61, 179.84, 199.48; IR (KBr): 3548, 3476, 3415, 3249, 2999, 2962, 2950, 2933, 2857, 1689, 1601, 1588, 1515, 1484, 1451, 1418, 1360, 1314, 1272, 1223, 1209, 1158, 1140, 887, 810 cm⁻¹; MS (AP+) calcd for C₁₅H₁₉NO₃ 261.14, found m/z 262.2 [M+H]⁺; CHN analysis C₁₅H₁₉NO₃; Theoretical calcd: C, 68.94; H, 7.33; N, 5.36; O, 18.37; Found: C, 69.19; H, 7.18; N, 5.25. Compound (3d): Yellow solid; mp 124–127 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.30–2.24 (m, 10H), 6.63 (d, 1H, J = 8.8 Hz), 6.71 (t, 1H, J = 7.6 Hz), 7.37 (t, 1H, J = 8 Hz), 8.22 (d, 1H, J = 8.4 Hz), 8.47 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 20.99, 24.99, 32.55, 59.78, 115.48, 116.35, 127.34, 133.11, 135.71, 142.95, 180.43; IR (KBr): 3551, 3476, 3414, 3391, 3235, 2942, 2864, 2650, 1707, 1615, 1576, 1504, 1444, 1423, 1348, 1328, 1300, 1268, 1248, 1196, 1164 cm⁻¹; CHN analysis for C₁₃H₁₆N₂O₄; Theoretical calcd: C, 59.08; H, 6.10; N, 10.60; O, 24.22; Found: C, 59.18; H, 6.01; N, 10.55. Compound (3e) Light brown solid; mp 70-73 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.19–2.32 (m, 13 H), 2.39 (s, 3H), 6.39 (d, 1H, J = 8.0 Hz), 6.83–7.30 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 17.48, 17.71, 20.59, 21.41, 25.28, 31.72, 60.76, 115.26, 124.35, 127.45, 131.33, 131.79, 139.17, 178.84; IR (KBr): 3548, 3416, 3236, 2965, 2924, 2857, 1710, 1637, 1618, 1589, 1560, 1514, 1454, 1389, 1353, 1314, 1287 cm⁻¹; MS (ES+) calcd for $C_{15}H_{21}NO_2$ 247.16, found m/z 248.0 [M+H]⁺; CHN analysis for $C_{15}H_{21}NO_2$; Theoretical calcd: C, 72.84; H, 8.56; N, 5.66; O, 12.94; Found: C, 72.79; H, 8.65; N, 5.72. Compound (3f): Yellow sticky solid; ¹H NMR (400 MHz, DMSO-d₆): δ = 1.43–2.12 (m, 10H), 4.96 (s, 1H), 6.47 (d, 1H, J = 2.4 Hz), 6.68 (d, 1H, J = 8.8 Hz), 7.33 (d, 1H, J = 8.4 Hz), 12.60 (br, s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 20.97, 25.05, 32.03, 62.93, 114.08, 118.52, 118.92, 130.04, 133.20, 141.40, 179.63; IR (CHCl₃): 3424, 3018, 2940, 2861, 1709,1709, 1593, 1509, 1451, 1415, 1278, 1215, 1156, 1082 cm⁻¹; MS (AP+) calcd for C₁₃H₁₅Cl₂NO₂ 287.05, found m/z 288.0 [M+H]+; CHN analysis for C₁₃H₁₅Cl₂NO₂; Theoretical calcd: C, 54.18; H, 5.25; Cl, 24.61; N, 4.86; O, 11.10; Found: C, 54.49; H, 5.06; N, 4.43. Compound (3g): Yellowish white solid; 118–121 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.45 (m, 9H), 2.01–2.18 (m, 4H), 3.42–3.58 (m, 4H), 4.31 (br, s, 1H), 6.71 (m, 1H), 6.83 (s, 1H), 6.89 (d, 1H, J = 7.2 Hz), 7.13 (t, 1H, J = 7.2 Hz); ¹³C NMR (100 MHz, DMSO- d_6): δ = 27.99, 57.12, 78.73, 112.19, 112.75, 115.66, 130.23, 133.23, 147.73, 153.84, 176.01; IR (KBr): 3551, 3475, 3415, 3347, 2978, 2927, 2871, 2855, 1699, 1662, 1638, 1618, 1596, 1485, 1408, 1368, 1328, 1291, 1253, 1174, 1159 cm⁻¹; CHN analysis for C₁₇H₂₃ClN₂O₄; Theoretical calcd: C, 57.54; H, 6.53; Cl, 9.99; N, 7.89; O, 18.04; Found: C, 57.73; H, 6.46; N, 6.02. Compound (3h): See Ref. 2b. Compound (3i): White solid; mp 110-113 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.45 (s, 9H), 1.97–1.99 (m, 2H), 2.12–2.14 (m, 2H), 2.53 (s, 3H), 3.26 (t, 2H, J = 10.4 Hz), 3.73–3.75 (m, 2H), 5.98 (br, s, 1H), 6.82 (d, 1H, J = 6.8 Hz), 7.21–7.35 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 26.82, 28.58, 32.56, 46.52, 58.59, 80.43, 115.13, 119.67, 120.32, 129.61, 138.18, 145.16, 155.10, 178.05, 199.04; IR (KBr): 3552, 3478, 3414, 3356, 3237, 2982, 2929, 1686, 1677, 1639, 1617, 1603, 1591, 1479, 1453, 1417, 1367, 1325, 1281, 1247, 1161 cm⁻¹; CHN analysis for C₁₉H₂₆N₂O₅; Theoretical calcd: C, 62.97; H, 7.23; N, 7.73; O, 22.07; Found: C, 63.37; H, 7.00; N, 7.69. Compound (**3j**): Off white solid; mp 120–123 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.45 (s, 9H), 1.99–2.17 (m, 4H), 2.19 (s, 3H), 2.22 (s, 3H), 3.17 (t, 2H, J = 8.0 Hz), 3.79 (m, 2H), 6.23 (br, 2H), 6.s, 1H), 6.43 (d, 1H, J = 8.0 Hz), 6.85 (d, 1H, J = 7.6 Hz), 6.92 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 17.87, 20.54, 28.58, 32.36, 39.71, 58.38, 80.28, 114.31, 124.90, 127.29, 128.81, 131.81, 139.48, 154.97, 179.34; IR (KBr): 3552, 3480, 3415, 3363, 3236, 2978, 2930, 2870, 1702, 1677, 1638, 1619, 1521, 1454, 1408, 1367, 1316, 1282, 1248, 1160, 1131 cm⁻¹; CHN analysis for C₁₉H₂₈N₂O₄; Theoretical calcd: C, 65.49; H, 8.10; N, 8.04; O, 18.37; Found: C, 65.29; H, 8.05;

N, 8.13. Compound (3k): Off white solid; mp 135-137 °C; ¹H NMR (400 MHz, CD₃OD): δ = 1.40–2.02 (m, 10H), 6.73 (t, 1H, J = 6.4 Hz), 6.87 (d, 1H, J = 8.8 Hz), 7.64–7.68 (m, 1H), 7.92 (d, 1H, J = 5.2 Hz); ¹³C NMR (100 MHz, CD₃OD): δ = 22.81, 26.59, 33.88, 62.72, 113.80, 113.84, 141.35, 141.51, 156.67, 179.21; IR (KBr): 3237, 3154, 3122, 3089, 2945, 2922, 2858, 2848, 1672, 1634, 1609, 1541, 1460, 1446, 1384, 1337, 1297, 1272, 1252 cm⁻¹; MS (AP+) calcd for $C_{12}H_{16}N_2O_2$ 220.12, found m/z 221.9 [M+H]⁺; CHN analysis for $C_{12}H_{16}N_2O_2$; Theoretical calcd: C, 65.43; H, 7.32; N, 12.72; O, 14.53; Found: C, 65.63; H, 7.17; N, 12.85. Compound (31): Off white solid; mp 120-122 °C; ¹H NMR (400 MHz, CD₃OD): δ = 1.36 (s, 9H), 2.06–1.94 (m, 4H), 3.20–3.21 (m, 2H), 3.56–3.62 (m, 2H), 6.58 (t, 1H, J = 6.4 Hz), 6.69 (d, 1H, J = 8.4 Hz), 7.46–7.50 (m, 1H), 7.83 (d, 1H, J = 4.8 Hz); 13 C NMR (100 MHz, CD₃OD): δ = 20.81, 28.69, 33.50, 60.25, 81.21, 113.03, 114.12, 140.45, 143.47, 156.44, 157.32, 175.29, 178.21; IR (KBr): 3413, 3272, 3118, 2980, 2938, 2858, 1702, 1672, 1637, 1614, 1539, 1481, 1412, 1394, 1376, 1283, 1249, 1154 cm⁻¹; MS (ES+) calcd for $C_{16}H_{23}N_3O_4$ 321.17, found m/z 322.2 [M+H]⁺; CHN analysis for $C_{16}H_{23}N_3O_4$: Theoretical calcd: C, 59.80; H, 7.21; N, 13.08; O, 19.91; Found: C, 60.10; H, 7.11; N, 13.23. *Compound* (**3m**): White solid; mp 84–87 °C (uncorrected); 1 H NMR (400 MHz, CDCl₃): δ = 1.35–2.20 (m, 10H), 6.90–7.29 (m, 5H); 13 C NMR (100 MHz, CDCl₃): δ = 20.45, 24.44, 31.56, 79.50, 118.16, 121.68, 128.78, 153.97, 178.39; IR (KBr): 3552, 3477, 3416, 3237, 2929, 2857, 1703, 1638, 1618, 1597, 1495, 1449, 1406, 1292, 1269, 1227, 1146 cm⁻¹; CHN analysis for C₁₃H₁₆O₃: Theoretical calcd: C, 70.89; H, 7.32; O, 21.79; Found: C, 70.47; H, 7.39. Compound (3n): White solid; mp 54–57 °C; 1 H NMR (400 MHz, CDCl₃): δ = 1.55–2.00 (m, 10H), 6.97 (t, 1H, J = 8.0 Hz), 7.28 (d, 2H, J = 8.0 Hz); 13 C NMR (100 MHz, CDCl₃): δ = 21.42, 25.38, 26.83, 27.09, 78.98, 125.09, 129.09, 129.83, 180.10; IR (KBr): 3552, 3473, 3413, 3072, 2938, 2876, 2667, 1709, 1638, 1617, 1564, 1469, 1446, 1407, 1381, 1287, 1273, 1248, 1216, 1192, 1160,1084, 1060, 1043, 1004 cm⁻¹; MS (ES+) calcd for $C_{13}H_{14}Cl_2O_3$ 288.03, found m/z 288.4 [M+H]*; CHN analysis for C₁₃H₁₄Cl₂O₃: Theoretical calcd: C, 54.00; H, 4.88; Cl, 24.52; O, 16.60; Found: C, 54.30; H, 4.97. Compound (30): White crystalline solid; mp 50–53 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.35–2.11 (m, 10H), 7.30– 7.52 (m, 5H), 9.20 (br, s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 23.50, 25.22, 33.83, 55.34, 128.67, 129.54, 130.13, 136.98, 179.06; IR (KBr): 3414, 3070, 2968, 2937, 2855, 1694, 1639, 1473, 1451, 1438, 1406, 1306, 1286, 1264, 1253, 1242 cm⁻¹; MS (ES+) calcd for $C_{13}H_{16}O_2S$ 236.09, found m/z 236.8 [M+H]⁺; CHN analysis for C₁₃H₁₆O₂S: Theoretical calcd: C, 66.07; H, 6.82; O, 13.54; S 13.57; Found: C, 66.37; H, 6.69. Compound (**3p**) White solid; mp 109–112 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.35–2.10 (m, 10H), 7.29 (d, 2H, J = 8.4 Hz), 7.43 (d, 2H, I = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 23.48$, 25.15, 33.80, 55.48, 128.66, 128.95, 136.13, 138.14, 178.40; IR (KBr): 3552, 3477, 3414, 3230, 2960, 2935, 2857, 1724, 1688, 1638, 1617, 1574, 1474, 1448, 1387, 1285, 1279, 1216, 1183, 1152, 1130, 1090, 1013, 815 cm⁻¹; MS (ES+) calcd for C₁₃H₁₅ClO₂S 270.05, found m/z 271.2 [M+H]⁺; CHN analysis for $C_{13}H_{15}ClO_2S$: Theoretical calcd: C, 57.66; H, 5.58; Cl, 13.09; O, 11.82; S, 11.84; Found: C, 57.86; H, 5.47. Compound (3q): White solid; mp 148-151 °C (uncorrected); (400 MHz, CDCl₃): δ = 1.46 (s, 9H), 1.74–1.80 (m, 2H), 2.05–2.09 (m, 2H), 3.14–3.20 (m, 2H), 3.79–3.82 (m, 2H), 7.31 (d, 2H, J = 8.4 Hz), 7.42 (d, 2H, J = 8.4 Hz); 13 C NMR (100 MHz, CDCl₃): δ = 28.40, 32.69, 53.58, 80.12, 127.76, 129.19, 136.54, 138.16, 154.71, 176.78; IR (KBr): 3547, 3416, 3006, 2972, 2921, 2865, 2750, 2661, 1714, 1631, 1477, 1462, 1444, 1390, 1368, 1344, 1293, 1265, 1226, 1166, 1092, 1023, 1014, 823 cm⁻¹; MS (E5+) calcd for $C_{17}H_{22}CINO_4S$ 371.10, found m/z 372.3 [M+H]⁺; CHN analysis for $C_{17}H_{22}CINO_4S$: Theoretical calcd: C, 54.91; H, 5.96; Cl, 9.53; N, 3.77; O, 17.21; S, 8.62; Found: C, 55.45; H, 6.10: N. 3.64.